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Abstract

Nonlinear static and dynamic behaviour of a simply supported fluid-conveying tube, which has a constant inner

diameter and a variable thickness is analysed analytically and numerically. Nonlinear static bending is considered in

two loading cases: (i) a tube subjected to supercritical axial compressive forces acting at its edges or (ii) a tube loaded by

concentrated bending moments, which provide a symmetrical (with respect to the mid-span) shape of a tube. The

nonlinear governing equations of motions are derived by using Hamilton’s principle. The elementary plug flow theory

of an incompressible inviscid fluid is adopted for modelling a fluid–structure interaction. The flow velocity is taken as

the sum of a principal constant ‘mean’ velocity component and a fairly small pulsating component. Firstly,

eigenfrequencies and eigenmodes of a deformed tube are found from linearised equations of motions. Then resonant

nonlinear oscillations of a tube about its deformed static equilibrium position in a plane of static bending are

considered. A multiple scales method is used and a weak resonant excitation by the flow pulsation is considered in a

single-mode regime and in a bi-modal regime (in the case of an internal parametric resonance) and the stability of each

of them is examined. The brief parametric study of these regimes of motions is carried out.

r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Flexible fluid-conveying tubes are widely used in various applications, e.g., fuel supply systems, chemical industry,

medical equipment, etc., for connections between various vessels and appliances. These tubes are often exposed to

dynamic loading, including flow pulsation. Then it is of a practical relevance to check whether these loading conditions

are far from or close to the resonant ones and to predict a structural response at the resonant excitation. Such a problem

is rather complicated because typically the ‘initial’ or ‘original’ shape of a flexible tube is quite different from the shape,

which it has in a mounted device. Thus, before addressing dynamics of a flexible fluid-conveying tube, it is often

necessary to solve a static problem of its nonlinear deformation.

There is large number of publications referred to dynamics of fluid-conveying tubes. The present state of affairs in

this area is outlined by Paidoussis (1998). Most of the publications surveyed in this book are devoted to various aspects

of vibrations of straight tubes, specifically in the cases, when a tube is clamped at both sides or it is clamped at one edge

and free at the other. In a recent paper by Langthjem and Sugiyama (2000), a comprehensive survey of the literature

devoted to the latter case is given. Some attention in Chapter 6 of the book by Paidoussis (1998) has been also paid to

vibrations of curved pipes conveying fluid and the most useful classification of the approaches is given there as: (i) the

conventional inextensible theory, (ii) the extensible theory, and (iii) the modified inextensible theory. The main point in
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this classification is related to the role of flow-induced changes in static equilibrium configuration of a tube. Apparently,

this issue is most important when a pipe (say, a hose) is really flexible, i.e., when its bending stiffness is fairly small and

flow velocity actually controls its shape. This also means that the ‘initial’ shape of a tube (the shape it has in the absence

of a flow) is not ‘pre-stressed’ in all cases. However, in many practical situations, it is not entirely relevant and a tube

may be stiff enough not to change its configuration in response to variations in mean flow velocity. On the other hand, it

may be sufficiently flexible to exhibit a large static deformation due to action of some external forces or moments not

produced by a fluid–structure interaction. Then dynamic characteristics of a tube (e.g., its eigenfrequencies and

eigenmodes) are controlled by such the static deformation. The present paper addresses exactly this case. A standard

nonlinear beam theory (a flexible rod with a nonextensible axis) is used and firstly a nonlinear static bending of an

originally straight flexible elastic fluid-conveying tube having variable moment of inertia is considered. In this

formulation, the static bending is not affected by the presence of a fluid. Secondly, linear vibrations of a tube are

considered provided that fluid’s flow does not modify a static shape of a tube, but convection of a fluid’s mass makes

corrections to tube’s eigenfrequencies and eigenmodes of vibrations. Finally, nonlinear effects produced by a flow

pulsation are studied.

A problem of nonlinear static bending is posed in two cases: (i) a tube loaded by super-critical axial compressive

forces acting at its edges and (ii) a tube loaded by distributed bending moments specified as a function of the axial

coordinate, in particular, as delta functions. In the present paper, deformations are considered which are symmetric

with respect to the mid-span of a simply supported tube. A tube has a circular cross-section with a constant inner

Nomenclature

a1; b1 parameters defining the distribution of moment of inertia

ct the velocity of sound in the tube material, equal to
ffiffiffiffiffiffiffiffiffi
E= %r

p
%DðsÞ variable dimensional outer diameter of tube cross-section
%d dimensional inner diameter of tube cross-section

d nondimensional inner diameter of tube cross-section, equal to %d=l

E Young’s modulus

F area of tube cross-section

Ffl area occupied by a fluid

k material constant defining its physical nonlinearity

l dimensional length of a tube
%Mi dimensional concentrated bending moment

Mi nondimensional concentrated bending moment, equal to %Mi=El %d2

p0 dimensional static axial compressive force

%s dimensional axial coordinate

s nondimensional axial coordinate

b0 nondimensional static axial compressive force equal to p0=E %d2

bcr nondimensional static buckling force p3d2ða4 � 1Þ=64
g nondimensional modal damping coefficient

e formal nondimensional small parameter to indicate level of approximation
#e axial strain

%v circular frequency of flow pulsation

v nondimensional circular frequency of flow pulsation, equal to %v=o0

%r; %rfl dimensional densities of a tube material and fluid, respectively

r nondimensional fluid density, equal to %rfl= %r
s nondimensional detuning parameter

#s axial stress

%w0 dimensional mean flow velocity component

%w1 dimensional amplitude of flow harmonic pulsation

w0 nondimensional mean flow velocity component, equal to %w0=ct

w1 nondimensional amplitude of flow harmonic pulsation, equal to %w1=ct

dot time derivative, q=qt

prime spatial derivative, q=qs:
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diameter and a variable outer diameter. The nonlinearity produced by large displacements and slopes of a deformed

tube is taken simultaneously into account with the nonlinearity in a strain–stress relation in an ideal elasticity of the

tube’s material. An equilibrium configuration is found by minimisation of the functional of a potential energy of a tube

by the method of ‘local variations’ suggested by Banichuk and Tchernousko (1973). The analytical solution given by

Euler’s elastica for a tube of a uniform cross-section compressed by axial forces is used to validate this algorithm of

numerical solution.

Analysis of dynamics is performed in Section 2 for ‘in-plane’ motions of a tube, i.e., those developed in the plane of

static bending deformation. A nonlinear equation of vibrations of a fluid-conveying tube is derived in Section 3 by

applying Hamilton’s principle. A set of eigenfrequencies and relevant eigenmodes is found in a linearised formulation.

Then in Section 4 bi-modal analysis of nonlinear vibrations is performed. The standard multiple scales method (see

Nayfeh, 1973 or Thomsen, 1997) is applied to explore a case of the parametric excitation of vibrations by a flow

pulsation.

2. The static problem of nonlinear bending

A practical formulation of the problem for an elastic flexible tube either compressed by a supercritical axial force or

loaded by bending moments is to determine a distribution of bending moments (or a value of the supercritical

compressive force) that provides its desired shape. This is an inverse problem formulation, which may be

computationally quite expensive to solve. To avoid solving such a problem, an external loading may be considered

as given, whereas stiffness and geometry parameters of a tube may be treated as subjected to possible changes

(some scalar ‘active’ parameters of design should be introduced). Then a static problem of an ‘initial design’ for a

tube loaded by given axial forces or bending moments should be solved first, and a sensitivity analysis of the

shape of a tube (selected as an objective function) to the variations of parameters of design should be performed. Values

of the design variables yielding the desired shape of a tube may be identified based on results of such a sensitivity

analysis.

We consider nonlinear static bending of a tube provided that it is sufficiently slender so that no local buckling occurs

and it preserves cylindrical shape of the tube inner cross-section along the whole length l (a dimensional axial

coordinate %s is introduced hereafter). It is also assumed that a pressure in the fluid does not affect static deformation of

a tube, which therefore may be analysed without fluid loading. A beam of the tubular cross-section having a variable

moment of inertia is considered and the latter is selected as

IðsÞ ¼
p %d4ða4ðsÞ � 1Þ

64
; ð1Þ

where aðsÞ ¼ %DðsÞ= %d; %DðsÞ is variable dimensional outer diameter, %d ¼ const is the dimensional inner diameter of tube

cross-section, s ¼ %s=l is the nondimensional axial coordinate. There is the evident constraint imposed on a function aðsÞ:

aðsÞ > 1:0: ð2Þ

We restrict our analysis to symmetric (with respect to mid-span) shapes of a deformed tube, so this function has to be

symmetric too. The straightforward assumption then would be to choose a quadratic approximation. However, we

consider the case when a function aðsÞ is specified as

a�ðsÞ ¼ a1 cos
2ps

3
�

p
3

� �
þ b1; ð3Þ

where a1; b1 are some constants. Formula (3) provides rather smooth symmetric dependence of tube’s moment of inertia

on an axial coordinate. Of course, material distribution, given in this formula, is quite specific, but it features a typical

case when a tube is softer at its ends, than at the middle. For example, if a1 ¼ 0:2; b1 ¼ 0:9; then the thickness of a tube

tends to zero at its ends while the outer diameter at the middle of a beam exceeds in 10% the inner diameter. In fact,

function (3) is fairly similar to quadratic polynomial, but it has appeared that from the viewpoint of efficiency of

computations by Mathematica software (Wolfram, 1991), this shape function is more convenient.

A tube is made of a material exhibiting nonlinear elastic behaviour, and the following rheological law of nonlinear

elasticity is adopted after Tchernykh (1978):

#s ¼ E#eð1� k#e2Þ; ð4Þ

where #s; #e are the axial stress and axial strain, respectively, E is Young’s modulus and k is a material constant.
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The equilibrium configuration of a tube is conveniently defined by the angle jðsÞ (see Fig. 1(a) for the case of

compression by an axial force) selected as an unknown function of a ‘material’ coordinate s. The following energy

functional is introduced (see Banichuk and Tchernousko, 1973):

J ¼
Z 1

0

pd2

2
j0
0

� �2 a4 � 1

64
�

kd2ða6 � 1Þ
512

j0
0

� �2� 	
þ b0 cos j0 þ

X
i

Mij0idðs � siÞ

( )
ds; ð5Þ

where dðs � siÞ is the Dirac delta function and primes denote the spatial derivative q=qs:
The stationarity condition for this functional defines the stable equilibrium configuration of the tube. The first term in

square brackets presents contribution to the potential energy from the linear component in (4), the second one is related

to the nonlinear component. Formulation (5) comprises both the loading by an axial compressive force (the second

term) and the loading by bending moments (the third term). It is written in the nondimensional form (the energy

functional is scaled to El %d2). In functional (5), b0 ¼ p0=E %d2 is a value of the nondimensional static axial compressive

force, d ¼ %d=l is the ratio of the inner diameter to the length of the tube and Mi ¼ %Mi=Eld2 is the nondimensional

bending moment at the point s ¼ si: Variation of an energy functional (5) with respect to function j0ðsÞ results in the

following differential equation:

b0 sin j0 þ
pd2

64
j0
0ða

4 � 1Þ
 �0

�
kpd4

256
ðj0

0Þ
3ða6 � 1Þ

 �0
þ
X

i

Midiðs � siÞ ¼ 0: ð6Þ

For a simply supported tube, a conditionZ 1

0

sinj0ðsÞ ds ¼ 0 ð7Þ

which implies a lateral deflection of a tube w0ðsÞ should vanish at the right edge is used. An analytical solution for the

boundary problem (6), (7) is not available for arbitrary function aðsÞ and numerical algorithm suggested by Banichuk

and Tchernousko (1973) is used. It is not a goal of this paper to give detailed description of this algorithm, but it is

appropriate to note that it is based on discretisation of the function j0ðsÞ at nodal collocation points and successive

perturbations of its values there. This procedure is rather complicated and time-consuming in the general case.

However, it is considerably simplified if a deformed tube remains symmetric with respect to its middle cross-section. In

all the cases considered in this paper the symmetry condition holds true and therefore the numerical algorithm is

computationally inexpensive.

Fig. 1. (a) A buckled tube and (b) buckled configuration of an axially compressed tube: curve 1—exact solution; curve 2—numerical

solution.
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To check the validity of this numerical procedure, the computed shape of a buckled beam has been compared with

the available analytical results. Problem (6), (7) has a well-known solution in the case of an axially compressed beam for

aðsÞ ¼ const: The elementary linear stability analysis gives a static buckling force bcr ¼ p3d2ða4 � 1Þ=64; and the

nonlinear analysis of buckling gives a post-critical (b0 > bcr) configuration of a tube as Euler’s elastica. As the function

jðsÞ is found, a nondimensional lateral displacement wðsÞ and a corresponding horizontal coordinate xðsÞ are readily

computed

wðsÞ ¼
R s

0 sinjðsÞ ds;

xðsÞ ¼ 1�
R 1

s
cos jðsÞ ds:

ð9Þ

In Fig. 1(b), curve 1 represents buckled configuration of a tube corresponding to Euler’s elastica for aðsÞ ¼ 1:5; d ¼
0:02; bst ¼ 1:1bcr; e.g., an exact solution in the form of elliptic integrals, see, for example, Timoshenko (1936). Curve 2

represents the equilibrium shape of the same tube obtained by Banichuk–Tchernousko algorithm for 1024 collocation

points introduced along the length of a tube. The equilibrium shape of the beam obtained for 2048 collocation points is

exactly the same as displayed by curve 2, which witnesses a convergence of this algorithm. There is a good agreement

between curves 1 and 2, and hence all results reported below are obtained provided that the static problem is solved at

this level of approximation. In Fig. 2, the equilibrium shape of the same tube loaded by two symmetrically positioned

(sM ¼ 0:25 and 0:75) concentrated moments (M ¼ 5:32� 10�4) is shown. Apparently, a tube is deformed only

between the points where moments are applied, while its ‘outer’ parts remain straight.

In Figs. 3(a) and (b), static equilibrium configurations of the tube with a nonuniform cross-section are shown. It is

loaded by two moments at sM ¼ 0:25 and 0:75: The results illustrated in Fig. 3(a) are obtained for the following set

of parameters of design: a1 ¼ 0:4; M ¼ 1:73� 10�3; k ¼ 0:2; and d ¼ 0:05: Three values of parameter b1 are taken and

as is seen, the deformed shape of a tube is very sensitive to possible variations of design parameters. In Fig. 3(b), the

static configuration of a beam is shown for b1 ¼ 0:9; k ¼ 0:2 in two loading cases. Although the magnitudes of bending

moment M and tube parameter a1 are different, maximum lateral deflection in both cases is approximately the same

(wmax=l ¼ 0:365). Thus, a proper choice of design parameters controlling moment of inertia (a1; b1) in response to

alternations in a bending moment (M) may fulfil the required constraints imposed on deflections of a tube (if there are

any). The role of a nonlinear elasticity is illustrated in Fig. 4 for the case of M ¼ 8:96� 10�5 (two moments are

positioned at sM ¼ 0:25 and 0:75), d ¼ 0:02; a1 ¼ 0:2; and b1 ¼ 0:9: Curve 1 presents an equilibrium configuration

of the beam obtained with the nonlinear elasticity term included into Hamiltonian (k ¼ 0:2), curve 2 corresponds to

analysis performed with k=0. As is seen, the difference between these two curves is negligibly small. In fact, the

nonlinear elasticity plays an important role only for rather short rods, i.e., when the ratio of an inner diameter of the

tube to its length is not very small. For such short tubes large ‘global’ bending is typically associated with local buckling

which is not considered in this paper. Therefore, we conclude that the dominant nonlinear effect in behaviour of long

tubes is produced by a nonlinear geometry, rather than by a nonlinear constitutive law.

3. Governing equations of motions of a deformed tube: linear analysis of vibrations

The dynamics of a tube is considered in the case when it has been subjected to large static deformation and then

a fluid flow is introduced. It is convenient to use Hamilton’s principle to derive governing equations of motions.

Fig. 2. A deformed tube symmetrically loaded by concentrated bending moments.
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The potential energy of a tube and its kinetic energy are presented in the dimensional form as

V ¼
EIð%sÞ
2

ðj0Þ2 � Ekp
%D6ð%sÞ � %d6

1024
ðj0Þ4;

K ¼
%rF

2
ðð ’uÞ2 þ ð ’wÞ2Þ þ

%rflFfl

2
ðð ’u þ %w cos jÞ2 þ ð ’w þ %w sin jÞ2Þ; ð10Þ

where %r; %rfl are densities of the tube material and fluid, respectively, F is the cross-sectional area of the tube, Ffl is the

area occupied by the fluid, and dots denote a time derivative. The flow velocity is introduced in the form

%w ¼ %w0 þ %w1 cos %nt; ð11Þ

Fig. 3. (a) Static deformation of a tube with a nonuniform cross-section loaded by two moments. Influence of design parameter b1:

curve 1—b1 ¼ 0:8; curve 2—b1 ¼ 0:95; curve 3—b1 ¼ 1:0 and (b) static deformation of a tube with a nonuniform cross-section loaded

by two moments. Curve 1—M ¼ 5:82� 10�4; a1 ¼ 0:30; curve 2—M ¼ 5:41� 10�4; a1 ¼ 0:22:

Fig. 4. Static deformation of a tube with a nonuniform cross-section loaded by two moments. Role of nonlinear elasticity. Curve 1—

k ¼ 0:2; curve 2—k ¼ 0:
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%w0; %w1 are the mean flow velocity component and the amplitude of its harmonic pulsation, respectively, %n is a circular

frequency of flow pulsation. As is seen from (10), the flow of an incompressible inviscid fluid contributes only to the

kinetic energy of a system, so we have assumed that the gravity force is neglected or a horizontal tube is considered. We

also assume that the axis of a tube is incompressible and its axial displacement is formulated as,

uð%sÞ ¼ l � %s �
Z l

%s

cos j d%s: ð12Þ

The Hamiltonian becomes

H ¼
Z l

0

Z t2

t1

�
EIð%sÞ
2

ðj0Þ2 þ Ekp
%D6 � %d6

1024
ðj0Þ4

�
þ

%rF

2

Z l

%s

’j sinj d%s

� �2

þ
Z %s

0

’j cos j d%s

� �2
" #

þ
%rflFfl

2

Z l

%s

’j sin j d%s þ %w cos j
� �2

þ
Z %s

0

’j cos j d%s þ %w sin j
� �2

" #)
dt d%s: ð13Þ

The stationarity condition dH þ
R t2

t1
dWp dt þ

R l

0

R t2
t1
dA dt d%s ¼ 0 yields the nonlinear equation of motions

Z %s2

0

ð %rF þ %rflFflÞ
Z %s1

0

ð .j cos j� ð ’jÞ2 sin jÞ d%s1

� 	
d%s2 cos j

�
Z %s2

0

ð %rF þ %rflFflÞ
Z l

%s1

ð .j sin jþ ð ’jÞ2 cos jÞ d%s1

� 	
d%s2 sinj

þ %rfl %Ffl

Z %s

0

ð’%w sin jþ 2%w ’j cos jÞ d%s cos j�
Z %s

0

ð’%w cos j� 2%w ’j sinjÞ d%s sin j
� 	

þ ðEIj0Þ0 þ p0 sinjþ
Ek %d 6p
256

ðj0Þ3ða6 � 1Þ
 �0

þ
X

i

%Mi

l
dð%s=l � %si=lÞ

þ %rflFfl %w2 cos jð0Þ sinj ¼ 0: ð14Þ

Here the variation of a virtual nonconservative work is

dWp ¼ � %rflFflð ’uÞ
2 l �

Z l

%s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðw0Þ2

q
d%s

� �0 �����
0

d
Z l

%s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðw0Þ2

q
d%s

� �����
0

;

see Semler et al. (1994), and the work done by external potential forces is

A ¼ p0ðl � %sÞ � p0

Z l

%s

cos j d%s

� 	����
%s¼0

þ
X

i

%Mijidð%s � %siÞ:

Eq. (14) is equally valid for the linear pre- and post-critical analysis of vibrations, for the analysis of nonlinear

oscillations about buckled static configuration and for the analysis of large amplitude oscillations, including snap-

through motions. It is convenient to transform Eq. (14) to a nondimensional form by introducing the following

nondimensional parameters (besides those already used in Eq. (5)):

t ¼ to0; l ¼ o=o0; ct ¼
ffiffiffiffiffiffiffiffiffi
E= %r

p
; r ¼ %rfl= %r; w ¼ %w=ct;

where ct is a sound speed in the tube material and o0 is a scaling factor for the time dependence. In an elementary linear

analysis, this parameter is normally chosen as the first eigenfrequency of free oscillations of an unloaded tube. To

analyse vibrations of a deformed tube, the function jðs; tÞ is formulated as

jðs; tÞ ¼ j0ðsÞ þ *j1ðs; tÞ 	 j0ðsÞ þ j1ðsÞexpð�iltÞ ð15Þ

In Eq. (15), the function j0ðsÞ defines symmetric static equilibrium configuration and *j1ðs; tÞ is the function describing

small oscillations of a deformed tube. If formula (15) is substituted into Eq. (14) and linearisation with respect to
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*j1ðs; tÞ is performed, then one obtains

b0j1 cos j0 þ
pd2

64
j

00

1ða
4 � 1Þ þ 4a3a

0
j

0

1

h i
�

kpd4

256
18a5a

0
ðj0

0Þ
2j

0

1

h
þ 3ða6 � 1Þ ðj0

0Þ
2j

00

1 þ 2j
0

0j
00

0j
0

1

� �i
þ

p
4
rw20j1 cos j0 cos j0ð0Þ

þ
p
4
l2
Z s

0

ða2 � 1þ rÞ
Z s

0

j1 cos j0 ds2 cos j0 �
Z s

0

ða2 � 1þ rÞ
Z 1

s

j1 sin j0 ds2 sin j0

� 	

þ
p
2
rlw0

Z s

0

j1 cos j0 ds cos j0 þ
Z s

0

j1 sin j0 ds sinj0

� 	
¼ 0: ð16Þ

In the case of a simply supported tube, the function j1ðsÞ is sought in the form

j1ðsÞ ¼
XN

m¼1

Am cos mps: ð17Þ

Eq. (16) is valid for computation of eigenfrequencies and eigenmodes of a tube containing a flowing fluid, since the fluid

flow parameters w0; r are accounted for.

In this paper, the analysis of the statics and dynamics of the tube is performed in a nondimensional form,

and its results could be applied to tubes of very different dimensions. However, as has already been discussed,

our choice of parameters is aimed at modelling dynamics of rather small tubes made of rubber-like material and filled

by water or another dense and weakly compressible fluid, which are used in the chemical industry or medical

equipment.

The first and the second eigenfrequencies of an axially compressed tube having aðsÞ ¼ a�ðsÞ; a1 ¼ 0:2; b1 ¼ 0:9;
d ¼ 0:02 and k ¼ 0:2 are shown in Fig. 5(a). Curves 1 and 2 correspond to w0 ¼ 0; r ¼ 0; i.e., to the absence of a fluid

and curves 3 and 4 correspond to w0 ¼ 0;r ¼ 0:1: As is well known, eigenfrequency parameters ðo1l=ctÞ
2 and ðo2l=ctÞ

2

in the pre-critical range [0, bcr] decay linearly with a growth in the magnitude of a compressive axial force, whereas in

the post-critical range both of them grow relatively slowly with a supercritical growth in this force. In Fig. 5(b), the first

two nondimensional eigenfrequency parameters of a tube loaded by concentrated bending moments acting at points

sm ¼ 0:25 and 0:75 are displayed as functions of the magnitude of a nondimensional bending moment M in the same

manner as in Fig. 5(a). Unlike the case of loading by an axial force, an increase in the magnitude of bending moment

results in monotonous growth of both frequencies. As follows from Figs. 5(a) and (b), various values of the ratio

Fig. 5. (a) Dependence of the first two eigenfrequency parameters of a tube on the magnitude of a compressive axial force. Curves 1

and 3 display ðo1l=ctÞ
2; curves 2 and 4 display ðo2l=ctÞ

2; (b) dependence of the first two eigenfrequency parameters of a tube on the

magnitude of a bending moments. Curves 1 and 3 display ðo1l=ctÞ
2; curves 2 and 4 display ðo2l=ctÞ

2; and (c) the first two

eigenfrequency parameters of a tube loaded by concentrated bending moments as functions of the mean flow velocity w0: Curve 1—

ðo1l=ctÞ
2; curve 2—ðo2l=ctÞ

2:
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between the first two eigenfrequencies (e.g., internal parametric resonance) may be obtained by a proper choice of

magnitudes of an axial compressive force and bending moments. Fig. 5(c) shows the dependence of the first and the

second eigenfrequency parameters on the mean component of flow velocity w0 for aðsÞ ¼ a�ðsÞ; a1 ¼ 0:2; b1 ¼ 0:9;
d ¼ 0:02; ; k ¼ 0:2; r ¼ 0:1 and static configuration relevant to M ¼ 2:99� 10�5: Both the eigenfrequency parameters

decrease with the growth in w0 and it is in a good agreement with the results reported, for example, in Svetlitskij (1987).

As follows from comparison of the graphs shown in Figs. 5(b) and (c), for a given range of parameters, eigenfrequencies

decrease with growth in the mean component of flow velocity and increase with a growth in the static loading by

bending moments.

As is well known, in the case of a simply supported axially loaded tube with constant outer and inner diameters, each

eigenmode of vibrations is defined by a single term in expansion (17). If a tube has variable outer diameter, then it is

necessary to retain several terms in (17) to construct each eigenmode. In Fig. 6 the first eigenmode is shown for a tube

with the following set of parameters: a1 ¼ 0:2; b1 ¼ 0:9; d ¼ 0:02 and k ¼ 0:2: Bending moments of M ¼ 2:99� 10�5

are applied at sM ¼ 0:25 and 0:75: This eigenmode is a rather smooth function between tube end supports and

loading points (so0:25 and s > 0:75). The static equilibrium shape of a deformed tube is a straight line in these regions.

Between loading points, in the interval 0.25oso0.75, static bending occurs and the first eigenmode also varies with a

high gradient. As is seen from comparison of these three curves, it is sufficient to retain five terms in expansion (17) to

describe this eigenmode adequately.

4. Nonlinear dynamics: weak excitation

We consider near-resonant excitation of vibrations of a tube generated by flow pulsation and assume that the flow

velocity has a mean and a pulsating component (11). In practical applications, such an excitation may be relevant to,

say, pumping of a gasoline at a petrol station from a container to a car tank through a very flexible tube; or, in

medicine, to blood convection through an artificial vessel. In these (and many other) cases fluid transportation is

performed with some mean flow velocity subjected to small variations. Apparently, if the frequency of flow pulsation is

fairly close to the resonant frequency, then undesirable nonlinear phenomena may occur in the single-mode regime of

motions. It is also possible that, besides the coincidence between a frequency of flow pulsation with the first

eigenfrequency, there also exists an internal parametric resonance between the first two eigenfrequencies. Then a

nonlinear interaction between vibrations at these two eigenmodes (which are symmetric and skew symmetric,

respectively) may develop and result in dangerous bi-modal regimes of large-amplitude motions. In this section, we

consider both cases.

The standard approach we adopt to solve this problem governed by nonlinear partial differential Eq. (14) is to

combine Galerkin method for the spatial coordinate with a method of multiple scales, to obtain an analytical solution

of a reduced system of nonlinear ordinary differential ‘modal’ equations in the time domain. A set of linear eigenmodes

is used in the spatial coordinate. Direct numerical integration of the original Eq. (14) involves discretisation in the space

and time domains and, therefore, cannot give a clear insight into nonlinear effects of modal interaction due to the

inevitable presence of, for example, round-off errors. Therefore, analytical predictions obtained by the use of a method

of multiple scales are validated in this section by comparison with results of numerical integration of a reduced system

of ‘modal’ nonlinear ordinary differential equations in time.

Fig. 6. The first eigenmode of a tube loaded by concentrated bending moments. Curve 1—four terms are retained in expansion (17);

curve 2—five terms are retained; curve 3—six terms are retained.
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4.1. Single-mode analysis. Primary resonance

The method of multiple scales (Nayfeh, 1973; Thomsen, 1997) is used and a time-dependent component of function

*j1ðs; tÞ is sought similarly to (15) as

*j1ðs; tÞ ¼ AðtÞj1ðsÞ; ð18Þ

i.e., as a product of a shape function j1ðsÞ; taken here as the first eigenmode of linear oscillations about the post-critical

static equilibrium configuration, and a function AðtÞ pertaining to the time dependence. Such a choice of a function

*jðs; tÞ is standard in analysis of near-resonant nonlinear vibrations. It should be emphasised here that the eigenmode

j1ðsÞ depends on the static equilibrium shape of a tube and on the mean flow velocity, as shown in the previous section.

If, for example, static bending moments acting at the tube are changed, then this function should be modified because a

solution of the problem in static bending j0ðsÞ is also changed.

The method of multiple scales allows the solution of Eq. (14) to be rewritten as function of independent time

variables (scales). Thus, if t is rewritten as T0 ¼ t; then a ‘slow’ time is introduced as T1 ¼ et (e serves only to indicate

level of approximation) and the time derivative becomes d=dt ¼ q=qT0 þ e@=qT1: An excitation (flow pulsation) is

formulated in the nondimensional form as w ¼ w0 þ ew1 cos nt; n ¼ %v=o0: An asymptotic solution can now be expressed

in the form

AðtÞ ¼ B0ðT0;T1Þ þ eB1ðT0;T1Þ: ð19Þ

The fast scale describes oscillations in ‘real time’, while the slow time T1 accounts for slow modulations of amplitudes

and phases. The above formulation with two time scales is applied to study nonlinear motions of the tube under

external parametric resonance excitation conditions. Then the governing equation of motion (14) is transformed to a

polynomial form, up to the cubic powers of AðtÞ: Galerkin’s orthogonalisation procedure is applied, with the first

eigenmode j1ðsÞ used as a trial function, and the resulting ordinary differential nonlinear equation of motion is

(hereafter, l 	 l1 unless otherwise is stated)

k1
.A þ k2A ¼ k3A2 þ k4A3 þ rw0w1 k8 þ k9A þ k10A2

� �
cos ntþ rw21 k11 þ k12Að Þ cos2 nt

þ nrl1w1 k13 þ k14A þ k15A2
� �

sin ntþ rl1w1 k16
’A þ k17A ’A

� �
cos nt

þ rl1w0 k18
’A þ k19A ’A þ k20A2 ’A

� �
þ l21 k21ð ’AÞ2 þ k22Að ’AÞ2 þ k23A .A þ k24A2 .A

� �
� g ’A; ð20Þ

where kiði ¼ 1; 2;y; 24Þ are coefficients depending on functions j0ðsÞ and jðsÞ; see Appendix A and g is a

nondimensional modal damping coefficient. This parameter is introduced to take into account the energy dissipation in

the tube material. Here we adopt the simple assumption that the dissipation does not depend on the frequency of

excitation and on the mode shape. It should be pointed out that flow-induced ‘damping’ is accounted for in this model

by the term rl1w0k18 A: in Eq. (20). Apparently, the first eigenfrequency of oscillations may be formulated as l1 ¼ffiffiffiffiffiffiffiffiffiffiffiffi
k2=k1

p
: We consider a resonant case and let the excitation frequency be defined as

n ¼ l1 þ es; ð21Þ

where the detuning parameter s serves to indicate a mismatch between the frequencies v and l1:
Then equation of motion (20) may conveniently be split into two equationsto order e0:

q2B0

qT2
0

þ l21B0 ¼ 0; ð22Þ

and to order e1:

q2B1

qT2
0

þ l21B1 ¼
1

k1
�2k1

q2B0

qT0@T1
þ k3B2

0 þ k4B3
0 þ rw0w1ðk8 þ k9B0

�
þ k10B2

0Þ cos nT0 þ rw21ðk11 þ k12B0Þ cos2 nT0 þ nrl1w1ðk13 þ k14B0 þ k15B2
0Þ sin nT0

þ rl1w1ðk16 þ k17B0Þ
qB0

qT0
cos nT0 þ rl1w0ðk18 þ k19B0 þ k20B2

0Þ
qB0

qT0

þ l21 k21
qB0

qT0

� �2

þk22B0
qB0

qT0

� �2

þk23B0
q2B0

qT2
0

þ k24B2
0

q2B0

qT2
0

 !
� g

qB0

qT0

#
: ð23Þ

The first term in the asymptotic expansion (19) is a solution of Eq. (22) and it has the form

B0 ¼ NðT1Þ expðil1T0Þ þ #NðT1Þ expð�il1T0Þ; ð24Þ
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where the second term is the complex conjugate of the first one. To obtain a uniformly valid asymptotic solution, the

secular terms in the fast time scale T0 must be eliminated from the right-hand side of Eq. (23). Solution in the slow time

is sought as NðT1Þ ¼ 1
2
aðT1Þ expðixðT1ÞÞ; here aðT1Þ and xðT1Þ are its real-valued amplitude and phase, respectively.

Substituting (24) in (23), eliminating the secular terms, and separating the real and imaginary parts gives the following

system of amplitude modulation equations:

da

dT1
¼

1

2l1
�rw0w1

k8

2
þ k0a2

� �
� nrl1w1

k13

2
þ rw0w1a2

k10

2
� nrl1w1a2

3k15

2

� 	
sin c

�

þl21rw0a3k20 � rw21
k12

4
sin 2cþ l21rw1

a2

2
k17 cos cþ l21rw0k18a � gl1a

�
; ð25Þ

a
dc
dT1

¼ �
1

2l1
rw0w1

k8

2
þ k10a2

� �
þ nrl1w1

k13

2
þ rw0w2

k10

2
a2 þ nrw1

k15

2
a2

� 	
cos c

�

þ
rw21
2

ak12 þ rw21
k12

4
cos2c� l21rw1a2

k17

2
sin c

þð3k4 þ l21k22l
2 � 3l21k24l

2Þa3 þ 2al1s
�
;

where another phase angle is introduced as c ¼ x� sT1: The derivative of a phase angle x becomes

dx=dT1 ¼ dc=dT1 þ sT1: ð26Þ

A stationary amplitude of a is obtained from Eq. (25) by letting da=dT1 ¼ aðdc=dT1Þ ¼ 0 and solving a system of

nonlinear equations with respect to a and c: Then stability of this solution is checked in a standard way (see, for

example, Nayfeh, 1973) by constructing the Jacobian of system (25) and calculating its eigenvalues at the stationary

point. Negative real parts of all eigenvalues indicate stability of the obtained solution.

Typical amplitude response curves are presented in Fig. 7 for perfectly tuned weak resonant excitation. A tube is

statically loaded by two moments of magnitude M ¼ 2:21� 10�5 applied at sm ¼ 0:25 and 0:75: The parameters of

the tube are: a1 ¼ 0:2; b1 ¼ 0:95; d ¼ 0:02; k ¼ 0:2 and g ¼ 0:1: The nondimensional density of the fluid is (r ¼) 0.2.

The amplitude of symmetric resonant vibrations is plotted versus pulsating component of flow velocity w1 for two values

of mean flow velocity w0: Solid lines present a stable solution of amplitude modulation Eq. (25), while circles designate

values of the amplitude a obtained by direct numerical integration of the ‘modal’ Eq. (20). As is seen, for small flow

pulsation, the zero solution is stable and no flexural motions develop. However, as the amplitude of flow pulsation

reaches a certain threshold value, the zero solution loses stability and the tube performs nonlinear vibrations. As is seen,

the mean flow component produces a stabilising effect on the dynamic behaviour of the system.

4.2. Bi-modal analysis: internal parametric resonance

In the previous part of the paper, resonant excitation has been considered provided that only condition (21) holds.

However, as suggested by the analysis of linear vibrations of a tube, it is possible that besides this condition, an internal

Fig. 7. Amplitude response curves (a perfectly tuned resonance) versus a magnitude of pulsating flow component w1: Mean flow

velocity w0 ¼ 0:1 (curves 1 and 3) and w0 ¼ 0:2 (curves 2 and 4).
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parametric resonance occurs, i.e.,

l2 ¼ 2l1 þ es2; ð27Þ

where l2 is the second eigenfrequency of oscillations about the buckled static equilibrium position. As before, the flow

velocity is given as w ¼ w0 þ ew1 cos nt: The solution of a problem is sought now as

jðs; tÞ ¼ j0ðsÞ þ C1ðtÞX1ðsÞ þ C2ðtÞX2ðsÞ; ð28Þ

where X1ðsÞ;X2ðsÞ are selected as the first and second eigenmodes of the tube conveying fluid with constant velocity.

Standard Galerkin orthogonalisation technique gives two ordinary differential equations (l 	 l1):

a1 .C1 þ a3 ’C1 þ a4 ’C2 þ a5C1 ¼ a7C2
1 þ a8C2

2 þ a9C1C2

þ a10C2
1C2 þ a11C1C2

2 þ a12C3
1 þ a13C3

2 þ w1rw0ða14 þ a15C1 þ a16C2

þ a17C1C2 þ a18C2
1 þ a19C2

2 Þ cos ntþ rw21ða20 þ a21C1 þ a22C2Þ cos2 nt

þ nrlw1ða23 þ a24C1 þ a25C2 þ a26C2
1 þ a27C2

2 þ a28C1C2Þ sin nt

þ rlw1ða29 ’C1 þ a30 ’C2 þ a31C1
’C1 þ a32C1C2 þ a33C1

’C2 þ a34C2
’C2

þ a35C2
’C1Þ cos ntþ rlw0½ða36 þ a37C1 þ a38C2 þ a39C1C2Þ ’C1

þ ða40 þ a41C1 þ a42C2 þ a43C1C2Þ ’C2 þ l2ða44 ’C2
1 þ a45 ’C1

’C2 þ a46 ’C
2
2

þ a47C1
’C2
1 þ a48C2

’C2
2 þ a49C1

.C1 þ a50C2
.C2 þ a51C2

1
.C1 þ a52C2

2
.C2Þ � g ’C1; ð29aÞ

b2 .C2 þ b4 ’C2 þ b3 ’C1 þ b6C2 ¼ b7C2
1 þ b8C2

2 þ b9C1C2

þ b10C2
1C2 þ b11C1C2

2 þ b12C3
1 þ b13C3

2 þ w1rw0ðb14 þ b15C1 þ b16C2

þ b17C1C2 þ b18C2
1 þ b19C2

2 Þ cos ntþ rw21ðb20 þ b21C1 þ b22C2Þ cos2 nt

þ nrlw1ðb23 þ b24C1 þ b25C2 þ b26C2
1 þ b27C2

2 þ b28C1C2Þ sin nt

þ rlw1ðb29 ’C1 þ b30 ’C2 þ b31C1
’C1 þ b32C1C2 þ b33C1

’C2 þ b34C2
’C2

þ b35C2
’C1Þ cos ntþ rlw0½ðb36 þ b37C1 þ b38C2 þ b39C1C2Þ ’C1

þ ðb40 þ b41C1 þ b42C2 þ b43C1C2Þ ’C2 þ l2ðb44 ’C2
1 þ b45 ’C1

’C2 þ b46 ’C
2
2

þ b47C1
’C2
1 þ b48C2

’C2
2 þ b49C1

.C1 þ b50C2
.C2 þ b51C2

1
.C1 þ b52C2

2
.C2Þ � g ’C2 ð29bÞ

where aiðX1;X2;j0Þ; biðX1;X2;j0Þ are rather cumbersome coefficients not presented here for brevity. Thus, we search

for a solution of these equations in an expansion on the small parameter e:

C1ðtÞ ¼ C10ðT0;T1Þ þ eC11ðT0;T1Þ;

C2ðtÞ ¼ C20ðT0;T1Þ þ eC21ðT0;T1Þ:
ð30Þ

After substitution of expressions (30) in system (29), we obtain an elementary eigenvalue problem to order e0:

a1
q2C10

qT2
0

þ a3
qC10

qT0
þ a4

qC20

qT0
þ a5C10 ¼ 0;

b2
q2C20

qT2
0

þ b3
qC10

qT0
þ b4

qC20

qT0
þ b6C20 ¼ 0: ð31Þ

A solution for the problem to order e0 is taken as

C10 ¼ A1ðT1Þ expðil1T0Þ þ k2A2ðT1Þ expðil2T0Þ þ c:c:;

C20 ¼ k1A1ðT1Þ expðil1T0Þ þ A2ðT1Þ expðil2T0Þ þ c:c:; ð32Þ

where c.c. is a complex conjugate of the first two terms in (32), k1;k2 are modal coefficients:

kj ¼ �
ib3lj

b2l
2
j þ b4ilj � b6

¼ �
ia4lj

a1l
2
j þ a3ilj � a5

; j ¼ 1; 2: ð33Þ
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The amplitudes A1;A2 of vibrations are treated now as functions of slow time variable. The problem to order e1

becomes (only the first equation is given here)

a1
q2C11

qT2
0

þ a3
qC11

qT0
þ a4

qC21

qT0
þ a5C11 ¼ �2a1

q2C10

qT0@T1
� 2a2

q2C20

qT0@T1

� a3
qC10

qT1
� a4

qC20

qT1
þ a7C2

10 þ a8C2
20 þ a9C10C20 þ a10C2

10C20 þ a11C10C2
20

þ a12C3
10 þ a13C3

20 þ w1rw0ða14 þ a15C10 þ a16C20Þ cos nT0

þ nrlw1ða23 þ a24C10 þ a25C20Þsin nT0 þ rlw1 a29
qC10

qT0
þ a30

qC10

qT0

� �
cos nT0

þ rlw0 a36 þ a37C10 þ a38C20 þ a39C10C20ð Þ
qC10

qT0

�

þ a40 þ a41C10 þ a42C20 þ a43C10C20ð Þ
qC10

qT0

	
� g

qC10

qT0
: ð34Þ

The solution for the problem to order e1 can be expressed as follows:

C11 ¼ A111ðT1Þ expðil1T0Þ þ A121ðT1Þ expðil2T0Þ þ c:c:;

C21 ¼ A112ðT1Þ expðil1T0Þ þ A122ðT1Þ expðil2T0Þ þ c:c:
ð35Þ

To ensure a uniform validity of expansion (30), the following equations must have a trivial solution

Z1A111 þ Z2A112 ¼ L1;

Z5A111 þ Z6A112 ¼ L3: ð36aÞ

Z3A121 þ Z4A122 ¼ L2;

Z7A121 þ Z8A122 ¼ L4; ð36bÞ

where Z1 ¼ �a1l
2
1 þ a3il1 þ a5; Z2 ¼ a4il1; Z3 ¼ �a1l

2
2 þ a3il2 þ a5; Z4 ¼ a4il1; Z5 ¼ �b1l

2
1 þ b3il1 þ b5; Z6 ¼ b4il1;

Z7 ¼ �b1l22 þ b3il2 þ b5; Z8 ¼ b4il1;L1;L2;L3;L4 are presented in Appendix B.

As follows from the definition of the natural frequency, the principal determinants of both these systems vanish.

Therefore, to cancel secular terms, both complementary determinants should also vanish. It is easy to show that if any

one of them is zero along with the principal determinant, then the remaining one automatically equals zero. Thus,

conditions of elimination of secular terms in asymptotic expansion (30) are formulated as

Z1L3 � Z5L1 ¼ 0;

Z3L4 � Z7L2 ¼ 0:
ð37Þ

Straightforward algebraic manipulation results in a system of four amplitude modulation equations which are displayed

here as

dc1

dT1
¼ f1ðc1; c2; x1; x2Þ;

dx1
dT1

¼ f2ðc1; c2; x1; x2Þ;

dc2

dT1
¼ f3ðc1; c2; x1; x2Þ;

dx2
dT1

¼ f4ðc1; c2; x1; x2Þ: ð38Þ

The explicit formulation of the functions fi; i ¼ 1; 2; 3; 4; is quite cumbersome. Here c1; c2; x1; x2 are amplitudes and

phase angles of symmetric and skew-symmetric oscillations, A1 ¼ c1ðT1Þexpðix1ðT1ÞÞ;A2 ¼ c2ðT1Þexpðix2ðT1ÞÞ; see

Eq. (32).

Some results of numerical analysis of resonant vibrations of a fluid-filled tube with the same parameters as given in

Section 4.1, namely, a ¼ 0:2; b ¼ 0:95; d ¼ 0:02; k ¼ 0:2; r ¼ 0:2 and g ¼ 0:1; are illustrated in Fig. 8, for three cases of

loading by bending moments at sm ¼ 0:25 and 0:75: Their magnitudes exceed the magnitude of moments considered

in the previous part of the paper and each one of them makes condition (27) hold true. Curves 1 and 2 display the

dependence of amplitudes of dominantly symmetric and dominantly skew-symmetric modes on the amplitude of flow

pulsation for mean flow velocity of w0 ¼ 0:1 and curves 3 and 4 display the same dependence for w0 ¼ 0:15: Circles and
rectangles denote amplitudes of vibrations obtained from direct numerical integration of ‘modal’ Eq. (29a) and (29b).

Similar to the case treated in Section 4.1, for sufficiently small flow pulsation a zero solution is stable and no flexural

vibrations develop. As pulsation amplitude reaches a certain threshold value (e.g., w1E0:0275 for w0 ¼ 0:1; see

Fig. 8(a)), the zero solution becomes unstable, whereas a single-mode nonlinear motion develops. However, this regime
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of symmetric motions is stable in this particular case, only if w1o0:0354: If the amplitude of flow pulsation exceeds this

value, then a skew-symmetric component develops (curve 2) and the tube performs stable bi-modal vibrations. It should

be pointed out that if the problem is solved in a single term approximation, then the dependence of the amplitude of

symmetric motions is presented by the dashed curve 5, which smoothly emerges from curve 1 at w1E0:0354 and lies well

above its displayed part. Similarly, dashed curve 6 emerges from curve 3 for w0 ¼ 0:15; and the same holds true for all

other cases illustrated in Fig. 8. Transition from a single modal to a bi-modal regime of motion is often characterised by

a saturation phenomenon (Nayfeh, 1973; Thomsen, 1997), which manifests itself as ‘locking’ of the amplitude of a

symmetric mode due to generation of a skew-symmetric component of motions and growth in its amplitude. In the case

at hand, a single-mode solution is nonlinear and both amplitudes in the bi-modal regime remain dependent on the

amplitude of pulsation. As is seen from Figs. 8(a–c), an increase in mean flow velocity stabilises the zero solution and

pushes the occurrence of the bi-modal regime towards larger amplitudes of flow pulsation. In all three cases, the

asymptotic results are fully confirmed by the direct numerical integration of Eqs. (29a) and (29b).

The case when bending moments are applied at the edges of a tube, i.e., at sm ¼ 0:0 and 1:0; has also been

analysed. The magnitudes of bending moments have been chosen to produce the same static lateral deflections at

s ¼ 0:5 as in the previous case. Qualitatively, the amplitude response curve are much alike those in Figs. 8(a–c), and we

do not display them here for brevity. Comparison of these two loading cases shows that much lower magnitudes of

bending moments applied at sm ¼ 0:0 and 1:0 are required to produce the same maximum static lateral deflections.

Also, the amplitudes of symmetric oscillations about initial static equilibrium position are always lower in the case of a

fully curved tube than in the case of a tube curved only at the segment (0.25, 0.75).

5. Conclusions

A theoretical investigation of nonlinear static bending and vibrations of a simply supported nonuniform fluid-

conveying tube is presented. The problem in statics of a tube with variable moment of inertia is solved numerically and

Fig. 8. (a) Amplitude response curves versus a magnitude of pulsating flow component for M ¼ 2:09� 10�4; (b). amplitude response

curves versus a magnitude of pulsating flow component for M ¼ 1:19� 10�4 and (c) amplitude response curves versus a magnitude of

pulsating flow component for M ¼ 2:99� 10�5:
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it is shown that for sufficiently slender tubes their behaviour is controlled by nonlinear geometry, whereas the

contribution of nonlinear elasticity is very weak. Eigenfrequencies and eigenmodes of vibrations of a deformed tube are

found in a solution of a linearised problem in dynamics. Analysis is restricted by the in-plane motions of a tube, i.e.,

motions developed in a plane of the initial static bending. It is shown that in the case of static bending by two

symmetrically positioned moments, an internal parametric resonance is likely to occur between the first (symmetric) and

the second (skew symmetric) modes. Then, the nonlinear dynamics of the deformed tube is addressed. The method of

multiple scales is applied in the single and the bi-modal approximation to analyse the case of weak resonant excitation.

Ranges of parameters of a flow pulsation which are related to a stable zero solution, a stable single-mode solution

(when no internal parametric resonance occurs and also in the case of an internal parametric resonance) and a stable bi-

modal solution (in the case of an internal parametric resonance) are found. The mean flow velocity component is shown

to produce a stabilising effect. It is also shown that amplitudes of flow-induced vibrations are rather sensitive to static

loading conditions.

Appendix A

The nonlinear coefficients in the single-mode approximation are as follows:

k1 ¼
p
4
l2
Z 1

0

Z s

0

ða2 � 1þ rÞ
Z s

0

j cos j0 ds2 cos j0 �
Z s

0

ða2 � 1þ rÞ
Z s

0

j sin j0 ds2 sinj0

� �
j ds;

k2 ¼
Z 1

0

b0 cos j0jþ
p
64

%d2½ða4 � 1Þj
00
þ 4a3a

0
j

0
� �

kp %d4

64
3ða6 � 1Þðj

02
0 j

00
þ 2j

0

0j
00

0j
0
Þ

h�

þ18a5a
0
j

02
0 j

0
i
�

p
4
rw20 cos 2j0j

o
j ds;

k3 ¼
Z 1

0

1

2
b0 sin j0j

2 þ
kp %d4

64
3ða6 � 1Þð2j

0

0j
0
j

00
þ j

00

0j
02Þ þ 18a5a

0
j

0

0j
02

h i�

�
p
4
rw20 sin 2j0j

2
o
j ds;

k4 ¼
Z 1

0

1

6
b0 cos j0j

3 þ
kp %d4

64
3ða6 � 1Þj

02j
00
þ 6a5a

0
j

03
h i

�
p
6
rw20 cos 2j0j

3

� �
j ds;

k8 ¼
p
4

Z 1

0

j sin 2j0 ds; k9 ¼
p
2

Z 1

0

j2 cos 2j0 ds; k10 ¼ �
p
2

Z 1

0

j3 sin 2j0 ds;

k11 ¼
p
8

Z 1

0

j sin 2j0 ds; k12 ¼
p
4

Z 1

0

j2 cos 2j0 ds;

k13 ¼
p
4

Z 1

0

Z s

0

sinj0 ds cos j0 �
Z s

0

cos j0 ds sinj0

� �
j ds;

k14 ¼
p
4

Z 1

0

Z s

0

j cos j0 ds cos j0 �
Z s

0

sin j0 dsj sin j0 þ
Z s

0

j sin j0 ds sinj0 �
Z s

0

cos j0 dsj cos j0

� �
j ds;

k15 ¼
p
8

Z 1

0

�
Z s

0

sin j0 dsj2 cos j0 �
Z s

0

j cos j0 dsj sin j0 �
Z s

0

j2 sin j0 ds cos j0

�

þ
Z s

0

cos j0 dsj2 sinj0 þ
Z s

0

jsij0 dsj cos j0 þ
Z s

0

j2 cos j0 ds sinj0

�
j ds;

k16 ¼ �
p
2

Z 1

0

Z s

0

j cos j0 ds cos j0 þ
Z s

0

j sin j0 ds sin j0

� �
j ds;

k17 ¼ �
p
2

Z 1

0

�
Z s

0

j cos j0 dsj sin j0 �
Z s

0

j2 sin j0 ds cos j0 þ
Z s

0

j sinj0 dsj cos j0 þ
Z s

0

j2 cos j0 ds sinj0

� �
j ds;
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k18 ¼ �
p
2

Z 1

0

Z s

0

j cos j0 ds cos j0 þ
Z s

0

j sin j0 ds sin j0

� �
j ds;

k19 ¼ �
p
2

Z 1

0

�
Z s

0

j cos j0 dsj sin j0 �
Z s

0

j2 sin j0 ds cosj0 þ
Z s

0

j sin j0 dsj cosj0 þ
Z s

0

j2 cos j0 ds sin j0

� �
j ds;

k20 ¼ �
p
2

Z 1

0

�
1

2

Z s

0

j cos j0 dsj2 cos j0 þ
Z s

0

j2 sin j0 dsj sin j0 �
1

2

Z s

0

j3 cos j0 ds cos j0

�

�
1

2

Z s

0

j sin j0 dsj2 sin j0 þ
Z s

0

j2 cos j0 dsj cos j0 �
1

2

Z s

0

j3 sin j0 ds sin j0

�
j ds;

k21 ¼ �
p
4

Z 1

0

�
Z s

0

ða2 � 1þ rÞ
Z s

0

j2 sin j0 ds2 cos j0 �
Z s

0

ða2 � 1þ rÞ
Z 1

s

j2 cos j0 ds sin j0

� �
j ds;

k22 ¼ �
p
4

Z 1

0

Z s

0

ða2 � 1þ rÞ
Z s

0

j2 sin j0 ds2 j sin j0 �
Z s

0

ða2 � 1þ rÞ
Z s

0

j3 cos j0 ds2 cos j0

�

�
Z s

0

ða2 � 1þ rÞ
Z 1

s

j2 cos j0 ds2j cos j0 þ
Z s

0

ða2 � 1þ rÞ
Z 1

s

j3 sin j0 ds2 sin j0

�
j ds;

k23 ¼ �
p
4

Z 1

0

�
Z s

0

ða2 � 1þ rÞ
Z s

0

j cos j0 ds2j sinj0 �
Z s

0

ða2 � 1þ rÞ
Z s

0

j2 sin j0 ds2 cos j0

�

�
Z s

0

ða2 � 1þ rÞ
Z 1

s

j sin j0 ds2j cos j0 �
Z s

0

ða2 � 1þ rÞ
Z 1

s

j2 cos j0 ds2 sinj0

�
j ds;

k24 ¼ �
p
4

Z 1

0

�
1

2

Z s

0

ða2 � 1þ rÞ
Z s

0

j cos j0 ds2j2 cos j0 þ
Z s

0

ða2 � 1þ rÞ
Z s

0

j2 sin j0 ds2j sin j0

�

�
1

2

Z s

0

ða2 � 1þ rÞ
Z s

0

j3 cos j0 ds2 cos j0 þ
1

2

Z s

0

ða2 � 1þ rÞ
Z 1

s

j sin j0 ds2j2 sinj0

�
Z s

0

ða2 � 1þ rÞ
Z 1

s

j2 cos j0 ds2j cos j0 þ
1

2

Z s

0

ða2 � 1þ rÞ
Z 1

s

j3 sin j0 ds2 sin j0

�
j ds:

Appendix B

The left-hand sides of Eq. (36) are

L1 ¼ � 2ia1l1
dA1

dT1
� ða3 þ k1a4Þ

dA1

dT1
þ 2ða7 þ k1a8Þ %A1A2 expðis2T0Þ

þ a9k1 %A1A2 expðis2T0Þ þ a9k2 %A1A2 expðis2T0Þ þ 3a10A2
1
%A1k1 þ 4a10A1A2 %A2k2

þ a11k21A2
1
%A1 þ 2a11k1k2A1A2 %A2 þ 2a11k21A2

1
%A1 þ 2a11k1k2A1A2 %A2 þ 2a11k22A1A2 %A2

þ 3a12A2
1
%A1 þ 3a13k31A2

1
%A1 þ

w1rw0
2

a14 expð�is1T0Þ þ a15A2 expðiT0ðs1 þ s2ÞÞ½

þ a16k2A2 expðiT0ðs1 þ s2ÞÞ� �
inlw1
2

a23 expð�is1T0Þ þ a29A2k2 expðiT0ðs1 þ s2ÞÞ½

þ a30k2l2A2 expðiT0ðs1 þ s2ÞÞ� þ
irlw1
2

a29A2l2 expðiT0ðs1 þ s2ÞÞ½

þ a30k2l2A2 expð�iT0ðs1 þ s2ÞÞ� þ irkw0 a36l1A1 þ a37ð %A1A2l1 expðis2T0Þ þ %A1A2l2 expðis2T0Þ
 �

þ a38ð %A1A2k2l1 expðis2T0Þ þ %A1A2k1l2 expðis2T0ÞÞ þ a39ðA2
1
%A1k1l1 þ A1A2 %A2k1l1

þ 2A1A2 %A2k2l1 þ A1A2 %A2k1l2 þ 2A1A2 %A2k2l2Þ þ a40A1k1l1 þ a41 %A1A2k1l1 expðis2T0Þ

þ a43A2
1
%A1k21l1 þ 2a43A1A2 %A2k1k2l1 þ a42 %A1A2k1k2l1 expðis2T0Þ þ a41 %A1A2k2l2 expðis2T0Þ

þ 2a43A1A2 %A2k22l2 þ a42 %A1A2k1k2l2 expðis2T0Þ þ a43A1A2 %A2k1k2l2 þ a43 %A1A2
2k

2
2l2 expðis2T0Þ

� gil1A1ð1þ k1Þ;
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L3 is similar to L1 if the coefficients ai are replaced by the coefficients bi :

L2 ¼ � 2ia1k2
dA2

dT1
� a3

dA2

dT1
þ ða7 þ k1a8ÞA2

1 expð�is2T0Þ

þ a9l1A2
1 expð�is2T0Þ þ a10A2

2
%A2l2 þ 2a10A1A2 %A1l2

þ a11k22A2
2
%A2 þ 2a11k21A1 %A1A2 þ 2a11k1k2A2A1 %A1 þ 2a11k22A2

2
%A2 þ 3a12A2

2
%A2

þ 3a13k32A2
2
%A2 þ

w1rw0
2

½a15A1 expð�iT0ðs1 þ s2ÞÞ

þ a16k1A1 expð�iT0ðs1 þ s2ÞÞ� �
inlw1
2

½a29A1l1 expð�iT0ðs1 þ s2ÞÞ

þ a30k1l1A1 expð�iT0ðs1 þ s2ÞÞ� þ
irlw1
2

½a29A1l1 expð�iT0ðs1 þ s2ÞÞ

þ a30k1l1A1 expð�iT0ðs1 þ s2ÞÞ� þ irkw0½a36l2A2 þ a37A2
1l1 expð�is2T0Þ

þ a38ðA2
1k1l1 expð�is2T0ÞÞ þ a39ð3A1A2 %A1k1l1 expðis2T1Þ

þ 2A1A2 %A1k2l1 expðis2T1Þ þ 2A2
2
%A2k1l2 þ A1A2 %A1k1l1 þ 3A2

2
%A2k2l2Þ þ a41A2

1k1l1 expð�is2T0Þ

þ a42A2
1k

2
1l1 expð�is2T1Þ þ a43A1A2 %A2k21l1 þ 3a43 %A1A1A2k21l1 þ 2a43A1A2 %A1k1k2l1

þ 3a43A2
2
%A2k22l2 þ a40A2k2l2 þ a43A1A2 %A1k1k2l2 þ 2a43 %A2A2

2k1k2l2
� gil2A2ð1þ k2Þ;

L4 is similar to L2 if the coefficients ai are replaced by the coefficients bi :
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